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Organocatalytic domino oxa-Michael/aldol reactions between salicylaldehyde with electron deficient ole-
fins are presented. We screened guanidine, 1,1,3,3-tetramethylguanidine (TMG) and L-pipecolinic acid as
organocatalysts for this transformation. 3-Substituted 2-phenyl-2H-chromene derivatives are synthe-
sized with high yields and with poor enantioselectivity (5–17% ee) using L-pipecolinic acid while TMG
works well with cinnamaldehyde without using co-catalyst. These 3-substituted-2-phenyl-2H-chromene
derivatives are further derivatized to synthesize triazole and biotin-containing chromene derivatives, to
facilitate purification of protein targets.

� 2010 Elsevier Ltd. All rights reserved.
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For our ongoing chemical biology projects we are interested in
developing new compounds that interact with developmentally
important receptor-mediated pathways such as the TGF-b
pathway, acting as antagonist or agonist.1,2 For this purpose, we
described a chemical genetic approach by testing a library of 2-
substituted-2H-chromene derivatives for their bioactivity on
developing zebrafish embryos. The zebrafish embryo provides an
ideal vertebrate model system for in vivo small molecule screens
because of its optical transparency, accessibility during embryonic
development, and permeability to small molecules. We synthe-
sized a small library of 2-substituted-2H-chromene derivatives
that were screened for bioactivity using the zebrafish model.3

Compound BT7 (1) (Fig. 1) was found to modulate a specific rele-
vant pathway, namely p-SAPK/JNK, which is known to be down-
stream of TGF-b, and can mediate Smad-independent signaling.3

Our next aim is to isolate BT7-interacting protein(s) by attach-
ing a biotin moiety, which would facilitate purification of the pro-
tein target.

For this purpose, we sought to develop function-oriented BT7
analogues and, finally, to attach biotin using functional group
transformations. Domino or cascade reactions that involve the for-
mation of multiple stereo centers comprise one-pot a rapidly
growing research field with respect to the synthesis of small mol-
ecules with complex architectures.4 However, the development of
catalytic diastero- and enantioselective domino reactions is still a
challenging task.5a–c In this context, the development of organocat-
ll rights reserved.
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alytic asymmetric domino reactions has been pursued. Nitro-
chromenes are versatile synthetic intermediates in organic
synthesis owing to the various possible transformations of the ni-
tro group into other useful functional groups. Useful synthetic
methods reported for the preparation of 3-nitro- and 3-formyl-2-
phenyl-2H-chromene are the domino Michael/aldol reactions of
salicylaldehyde with b-nitrostyrene and cinnamaldehyde.5d–g Basi-
cally this involves L-proline and L-proline-based catalysts, along
with a co-catalyst used for the above-mentioned purpose. How-
ever, this gives moderate to good yields and poor enantioselectiv-
ity.6 Based on the development of these reactions and our research
interest of finding catalytic domino reactions that give our func-
tion-oriented BT7 analogues (2, 3, and 4), we envisioned a reaction
between differently substituted salicylaldehyde with b-nitrosty-
rene and cinnamaldehyde using simple catalyst like guanidine,
1,1,3,3-tetramethylguanidine (TMG)7 and pipecolinic acid. We
choose these catalysts to improve selectivity, yield, reaction
time, and to use an alternative protocol in which the absence of
co-catalyst can provide a better yield.8
1: BT-7 2: EWG = NO2
3: EWG = CHO 
4: EWG = CN

Linker : triazole/tetrazole/ester

Figure 1.
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Table 2
Scope of the domino Michael/aldol reaction between various salicylaldehydes with E-
b-nitrostyrene9 6a

OH

CHO

R1

R2
NO2

+

9
(20 mol%)

toluene, 80oC
O

R1

R2 NO2

65 260-80%, 24 h

Entry Aldehyde (5a–e) Product (2a–e) Yieldb (%) eec (%)

1 OH

CHO

O

NO2

81 5

2 OH

CHOCl

Cl
O

Cl

Cl NO2

76 2

3 OH

CHOCl

O

Cl NO2

79 17

4 OH

CHOBr

O

NO2Br

80 16

5 OH

CHOHO

O

NO2HO

60 13

a Reaction with 5 (1 mmol), 6 (1.2 mmol) and catalyst (20 mol %) in toluene.
b Isolated yield of pure copmpound.
c Determined by chiral-HPLC analyses using chiralpak AD.
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In an initial catalyst screen for the reaction between salicylalde-
hyde 5a and b-nitrostyrene 6, we found to our delight that amines
7, 8, and 9 were catalysts for the domino Michael/aldol reaction. In
further experiments, other factors that influence the reaction were
thoroughly investigated such as solvent, catalyst loading, and reac-
tion temperature. In the beginning of our study b-nitrostyrene 6
and salicylaldehyde 5a were taken as the model substrates. The re-
sults are listed in Table 1. Catalyst 9 gave 81% yield of 2a at 80 �C in
toluene with poor enantioselectivity (5% ee).

After successfully optimizing the catalyst 9, solvent (toluene),
temperature (80 �C) and reaction time (24 h), we further explored
to generalize this reaction. For this purpose we used substituted
salicylaldehyde as substrates. Table 2 shows a number of examples
of this chemistry. Significant variation in the electronic and steric
features of salicylaldehydes is tolerated for the L-pipecolinic acid
9 catalyzed cascade process. The reaction between 3,5-dichlorosal-
icylaldehyde 5b with b-nitrostyrene 6 in the presence of 20 mol %
of L-pipecolinic acid 9 furnished our target BT7 nitro chromene
derivative 2b in 76% yield with poor enantioselectivity ee 2% (Table
2, entry 2). We then screened the 5-substituted salicylaldehydes,
5-chloro (5c), 5-bromo (5d) and b-nitrostyrene 6 under optimized
conditions, which gave the corresponding chromene derivatives 9c
and 9d in 79%, and 80% yields with poor enantioselectivity 17% and
18% ee, respectively (Table 2, entries 3 and 4). 5-hydroxy salicylal-
dehyde 5e gave the corresponding nitrochromene derivative in
moderate yield 60% with 13% ee (Table 2, entry 5).

The catalytic activity of 9 was further examined with the 2-ami-
no-benzaldehyde 10 and b-nitrostyrene 6 under the same reaction
conditions and gave the 3-nitro-2-phenyl-1,2-dihydro-quinoline10

11 in 85% yield and 26% ee (Scheme 1).
Having succeeded in synthesizing the BT7 nitrochromene deriv-

ative 2b, our attention was next focused on the attachment of bio-
tin. Yao and co-workers reported the [3+2] cycloaddition of 3-
nitro-2-phenyl-2H-chromene with sodium azide under catalyst
free conditions at 80 �C in DMSO.11 Following this procedure we
synthesized the BT7 triazole 12 by using 6,8-dichloro-3-nitro-2-
phenyl-2H-chromene 2b and sodium azide at 80 �C in DMSO in
82% yield. We next examined the feasibility of attaching biotin to
the BT7 triazole analogue 12 via triazole moiety using DCC under
various reaction conditions, however, we did not observe the ex-
pected product formation (Scheme 2).

As we failed to make amide linkage of d-biotin with 12, we then
decided instead of acid–amine coupling, alkyne-azide click chemis-
Table 1
Catalyst screen for the amine-catalyzed enantioselective domino reactions between
5a and 6

OH

CHO
NO2

+

20 mol% 
catalyst

solvent O

NO2

N
H

O

OH
H2 2

NH

N NH N N

NH

2a5a 6

7 8 9

Entry Catalyst Reaction condition Yielda,b (%)

1 7 Toluene, rt, 5 d 11
2 7 Toluene, 80 �C, 48 h 68
3 8 Toluene, rt, 5 d 30
4 8 Toluene, 80 �C, 48 h 75
5 9 Toluene, 80�C, 24 h 81 (5%, ee)b

a Reaction with 5 (1 mmol), 6 (1.2 mmol) in 2 ml toluene, isolated yield after
column purified.

b Determined by chiral-HPLC analyses using chiralpak AD.
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Scheme 2.
try could be implemented. Keeping this idea in mind we planned to
synthesize 14. According to Scheme 3 and 14 could be synthesized
from Michael adduct 3.

To synthesize compound 3, we screened the catalyst, 7, 8, 9,
and L-proline with 3,5-dichlorosalicylaldehyde 5b and cinnamalde-
hyde 13 as substrates. To our surprise, the reaction proceeded only
with 8 and gave 3 in 78% yield.12 After 72 h with L-proline only 10%
conversion was observed. Reaction of 5b with 13 in the presence of
L-pipecolinic acid and 7 was carried out but this failed to proceed at
all even after 72 h. It is very interesting to note that in the case of b-
nitrostyrene, all four catalysts gave 3-nitro-substituted chromene
derivatives in moderate to good yields, but in the case of cinnamal-
dehyde, only catalyst 8 (TMG) gave 3-formyl substituted chromene
derivatives. The detailed mechanism of this transformation is cur-
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rently being investigated in our laboratory. Aldehyde 3 was further
derivatized to 14. Compound 3 was treated with triphenylphos-
phine, CBr4 in Zn, resulting in dibromo derivative, which was fur-
ther treated with n-BuLi in �78 �C to furnish alkyne 14.13 Before
doing click chemistry with d-biotin azide, we initially attempted
a model reaction, using simple benzyl azide in the presence of
CuI and DIPEA, as base and successfully achieved the triazole 15
(Scheme 3).14 After obtaining the triazole derivative we also
planned to synthesize ester and amide linkage of d-biotin. Thus,
the aldehyde 3 was reduced by sodium borohydride in methanol,
which produced the corresponding alcohol 16 in 92% yield.15

We then esterified this alcoholic derivative of BT7 16 with d-
biotin using DCC, DMAP in dichloromethane and produced the d-
biotin-attached BT7 analogue 17 in 74% yield (Scheme 4).15 After
synthesizing 17, we focused to synthesize d-biotin-attached amide
(Scheme 5).16 It is interesting to note that we tried with many
reducing agents (but not by enzymatic process) to reduce only ni-
tro group to amine keeping the vinylic double bond intact in the
compound 2b but failed. However, the nitro compound 2b was re-
duced with BH3/THF to form the amine 18 which was isolated by
crystallization using ether–hexane system in 82% yield. We ob-
served both double bond and nitro group were reduced.8e The
amine 18 was coupled with biotin using EDCI and DMAP in DMF
to give BT7 biotin amide 19, which was purified by crystallization
using ether and hexanes in 78% yield.16

After synthesizing of BT7 nitro 2b and aldehyde 3, we next
turned our attention to functionalize BT7-carbonitrile 4. For this
purpose the reaction between 5b and phenyl-acrylonitrile was
executed with catalysts 7, 8, 9, and L-proline, to our surprise in
all cases we failed to achieve the synthesis of compound 4. From
this observation, it might be possible that, Michael acceptors play-
ing crucial role in this domino oxa-Michael/aldol reaction, because
in the case of b-nitrostyrene, all four catalysts worked well, for cin-
namaldehyde only catalyst 8 worked, for acrylonitrile, L-proline
worked (data not shown), but in the case of cinnamonitrile none
of the four catalysts worked.

In summary, we report an organocatalytic domino oxa-Michael/
aldol reaction that gives chromenes in high yields without using
co-catalyst and in less reaction time. Hence, the reaction consti-
tutes a simple catalytic high yield entry to pharmaceutically valu-
 NaBH4,
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able 2H-chromene and 1,2-dihydro-quinoline derivatives. We
successfully attached the biotin moiety to our lead compound
BT7. For the first time, we observed the catalytic activity of L-pip-
ecolinic acid to synthesize 3-substituted 2-phenyl chromene deriv-
atives with poor enantioselectivities (5–117% ee). We are in the
process of developing chiral L-pipecolinic acid-based and TMG-
based catalysts to improve activity, improve stereoselectivity in
various organic transformations and other enantioselective dom-
ino reactions. The detailed biological study of these compounds
as possible TGF-b pathway modulators is ongoing in our
laboratory.
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